riscope
Release 1.0.0

James Gleeson

Jan 27, 2021

1 Installation

2 RL-Scope artifact evaluation

3 Docker development environment
4 Unit tests

5 Source documentation

6 Documentation TODOs

Index

CONTENTS:

11
15
19
21

23

riscope, Release 1.0.0

RL-Scope is a cross-stack profiler for deep reinforcement learning workloads.
For installation instructions, see Installation.
For a tutorial on reproducing figures in the RL-Scope paper, see RL-Scope artifact evaluation.

For information on running the RL-Scope development docker container, see Docker development environment.

CONTENTS: 1

riscope, Release 1.0.0

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

The following page describes the steps to install rlscope using the standard pip python tool so you can use it in your
own RL code base. In particular, to install RL-Scope you must enable GPU hardware counter profiling, and install an
RL-Scope version that matches the CUDA version used by your DL framework.

Note: Don’t follow these steps if you are trying to reproduce RL-Scope paper artifacts; instead, follow the instructions
for running RL-Scope inside a reproducible docker environment: RL-Scope artifact evaluation.

1.1 1. NVIDIA driver

By default, the nvidia kernel module doesn’t allow non-root users to access GPU hardware counters. To allow
non-root user access, do the following:

1. Paste the following contents into /etc/modprobe.d/nvidia-profiler.conft:

’options nvidia NVreg_RestrictProfilingToAdminUsers=0 ‘

2. Reboot the machine for the changes to take effect:

’[host]$ sudo reboot now ‘

Warning: If you forget to do this, RL-Scope will fail during profiling with an
CUPTI_ERROR_INSUFFICIENT_PRIVILEGES error when attempting to read GPU hardware counters.

1.2 2. Determine the CUDA version used by your DL framework

RL-Scope does not have dependencies on DL frameworks, but it does have dependencies on different CUDA versions.

In order to host multiple CUDA versions, we provide our own wheel file index instead of hosting packages on PyPi
(NOTE: this is the same approach taken by PyTorch).

DL frameworks like TensorFlow and PyTorch have their own CUDA version dependencies. So, depending on which
DL framework version you are using, you must choose to install RL-Scope with a matching CUDA version.

https://uoft-ecosystem.github.io/rlscope/whl

riscope, Release 1.0.0

1.2.1 TensorFlow

For TensorFlow, the CUDA version it uses is determined by your TensorFlow version. For example TensorFlow v2.4.0
uses CUDA 11.0. You can find a full list here.

1.2.2 PyTorch

For PyTorch, multiple CUDA versions are available, but your specific PyTorch installation will only support one
CUDA version. You can determine the CUDA version by looking at the version of the installed PyTorch by doing

$ pip freeze | grep torch
torch==1.7.1+cul01l

In this case the installed CUDA version is “101” which corresponds to 10.1.

1.3 3. pip installation

Once you’ve determined your CUDA version, you can use pip to install rlscope. To install RL-Scope version 0.0.1,
CUDA 10.1 you can run:

’$ pip install rlscope==0.0.1+cul0l —-f https://uoft-ecosystem.github.io/rlscope/whl

More generally, the syntax is:

’$ pip install rlscope==${RLSCOPE_VERSION }+cu${CUDA_VERSION

Where RLSCOPE_VERSION corresponds to a tag on github, and CUDA_VERSION corresponds to a CUDA version
with “.” removed (e.g., 10.1 — 101).

For a full list of available releases and CUDA versions, visit the RL-Scope github releases page.

1.4 4. requirements.txt

To add RL-Scope to your requirements.txt file, make sure to add two lines to the file:

$ cat requirements.txt
-f https://uoft-ecosystem.github.io/rlscope/whl
rlscope==0.0.1+cul0O1l

The —£ ... line ensures that the rlscope package is fetched using our custom wheel index (otherwise, pip will fail
when it attempts to install from the default PyPi index).

Warning: pip freeze will not remember to add —f https://uoft—-ecosystem.github.io/
rlscope/whl, so avoid generating requirements.txt using its raw output alone.

4 Chapter 1. Installation

https://www.tensorflow.org/install/source#gpu
https://github.com/UofT-EcoSystem/rlscope/releases

CHAPTER
TWO

RL-SCOPE ARTIFACT EVALUATION

This is a tutorial for reproducing figures in the RL-Scope paper. To ease reproducibility, all experiments will run
within a Docker development environment.

2.1 1. Machine configuration

Generally speaking, RL-Scope works on multiple GPUs models. The only limitation is that you need to use a GPU that
supports the newer “CUPTI Profiling API”. NVIDIA’s documentation states that Volta and later GPU architectures
(i.e., devices with compute capability 7.0 and higher) should support this APIL If you attempt to use a GPU that
is unsupported, the Docker build will fail, since we check for CUPTI Profiling API compatibility using a sample
program (see dockerfiles/sh/test_cupti_profiler_api.sh).

The machine we used in the RL-Scope paper had a NVIDIA 2080Ti GPU. We have also reproduced results on an
AWS g4dn.xlarge instance which contains a T4 GPU.

2.1.1 AWS

As mentioned above, we have reproduced results on an AWS g4dn.xlarge instance which contains a single T4 GPU.
Please note that the other AWS instances that have more than one GPU are also fine (e.g., g4dn.12xlarge, p3.8xlarge),
and will simply run the experiments faster by using multiple GPUs in parallel.

To make setup as simple as possible, we used NVIDIA’s Deep Learning AMI to create an VM instance, which comes
preinstalled with Ubuntu 18.04, Docker, and an NVIDIA driver. If you wish to use a different OS image, just make
sure you install the NVIDIA driver and Docker.

Regardless of the starting OS image you use, there is still some host setup that is required (which will be discussed in
the next section).

2.2 2. Running the Docker development environment

In order to run the Docker development environment, you must first perform a one-time configuration of your host
system, then use run_docker.py to build/run the RL-Scope container. To do this, follow all the instructions at
Docker development environment. Afterwards, you should be running inside the RL-Scope container, which looks like
this:

https://docs.nvidia.com/cupti/Cupti/r_main.html#r_profiling_migration
https://github.com/UofT-EcoSystem/rlscope/blob/master/dockerfiles/sh/test_cupti_profiler_api.sh
https://aws.amazon.com/ec2/instance-types/g4
https://aws.amazon.com/ec2/instance-types/g4
https://aws.amazon.com/ec2/instance-types/#Accelerated_Computing
https://aws.amazon.com/marketplace/pp/B076K31M1S?ref_=srh_res_product_title

riscope, Release 1.0.0

All remaining instructions will run commands inside this container, which we will emphasize with [container]$.

2.3 3. Building RL-Scope

RL-Scope uses a C++ library to collect CUDA profiling information (Librlscope.so), and offline analysis of
collected traces is performed using a C++ binary (rls—-analyze)

To build the C++ components, run the following:

’[container]$ build_rlscope

2.4 4. Installing experiments

The experiments in RL-Scope consist of taking an existing RL repository and adding RL-Scope annotations to it. In
order to clone these repositories and install them using pip, run the following:

’[container]s install_experiments

6 Chapter 2. RL-Scope artifact evaluation

riscope, Release 1.0.0

2.5 5. Running experiments

The RL-Scope paper consists of several case studies. Each case study has its own shell script for reproducing figures
from that section. The shell script will collect traces from each relevant algorithm/simulator/framework, then generate
a figure seen in the paper in a corresponding subfolder output/artifacts/* of the RL-Scope repository.

2.5.1 RL Framework Comparison

This will reproduce results from the “Case Study: Selecting an RL Framework™ section from the RL-Scope paper; In
particular, the “RL framework comparison” figures, shown below for reference:

Training time (sec)

Training time (sec)

Transitions per iteration

450004
300004
150004

300004

200004

100004

400000

300000

200000

100000

TensorFlow TensorFlow
Autograph Eager
Framework configuration

Graph

I]]]]]]m Simulatar
Python
cuba
Backend

GPU
CPU + GPU
cPU

(1) Backpropagation
(2) Inference
(3) Simulation

(a) (TD3, Walker2D) - time breakdown

TensorFlow
Eager
Framework configuration

PyTorch
Eager

TensorFlow

Autograph Graph

ﬂ]]]]l]]] Simulator
P77 cuon
Backend

(1) Backpropagation
(2} Inference
(3} Simulation

(c) (TD3, Walker2D) - language transitions

Training time (sec)

Training time (sec)

Transitions per iteration

45000
30000
15000

25000

20000

15000

10000

5000

25000

20000

15000

10000

5000

I

N

TensorFlow
Autograph

%

TensorFlow
Eager
Framework configuration

I[[[”]m Simulatar
Python
CUDA
Backend

GPU
CPU + GPU
CPU

(1} Backpropagation
(2) Inference
(3} Simulation

(b) (DDPG, Walker2D) - time breakdown

(1)

TensorFlow
Autograph

TensorFlow
Eager
Framework configuration

TensorFlow
Graph

[[[Um]] Simulator
V777 cuoa
Backend

(1) Backpropagation
(2} Inference
(3} Simulation

(d) (DDPG, Walker2D) - language transitions

Figure 4. RL framework comparison: We used identical RL algorithm (left: TD3, right: DDPG), simulator (Walker2D), and tuned
hyperparameters; differences in execution between RL frameworks are strictly due to RL algorithm implementation and ML backend.
Differences in time breakdown (top) across RL frameworks can be explained by higher number of language transitions (bottom) between
the Python and the ML backend (Backend), and between the ML backend and the accelerator API calls (CUDA).

To run the experiment and generate the figures, run:

[container]$ experiment_RIL_framework_comparison.sh

Figures will be output to output/artifacts/experiment_RL_framework_comparison/x.pdf.

2.5. 5. Running experiments

riscope, Release 1.0.0

2.5.2 RL Algorithm Comparison

This will reproduce results from the “Case Study: RL Algorithm and Simulator Survey” section from the RL-Scope
paper; In particular, the “Simulator choice” figures, shown below for reference:

0 - - /77| CUDA
80 - Backend

GPU
CPU + GPU
CPU

v

i

E 15000 - [T simutator
= 10000+ Ry Python

2 so000-

=

m

=

=13
=
1

Percent (%)
o
=
1

20) - — 1) Backpropagation
= (2} Inference
A o] Sy 3) Simulation
D TELT] ‘.‘.I'J. \ BEbD ﬂl'.'.'h 'LETT ‘.‘.'I.'.'h'\ ': } ! Y :
SA A2C PPO2
Off-poalicy Off-policy On-palicy On-policy

RL algorithm

Figure 5. Algorithm choice: We used a popular RL environment
(Walker2D: robotics task of a walking humanoid) measured how
the stages (backpropagation, inference, simulation) of each mea-
sured algorithm change with respect to algorithm choice. All
tested RL workloads spend about 90% of their runtime purely in
the CPU.

To run the experiment and generate the figures, run:

’ [container]$ experiment_algorithm_choice.sh ‘

Figures will be output to output/artifacts/experiment_algorithm_choice/x.pdf.

Chapter 2. RL-Scope artifact evaluation

riscope, Release 1.0.0

2.5.3 Simulator Comparison

This will reproduce results from the “Case Study: Simulator Survey” section from the RL-Scope paper; In particular,
the “Simulator choice” figures, shown below for reference:

()
ﬁ s
E Backend
= 2™ H]]]]]]]] Simulator
2 913 =
= m [- - Ry Python
& %
" 100 3 /7] cupa
GPU
80
) CPU + GPU
= 607 CPU
&
c
g 407 _
. (1) Backpropagation
207 ;‘ (2} Inference
EE . .
o L e AN . ﬂ?b (3) Simulation
M:L@mm al Haﬁctﬂﬂatahﬁnp?a‘ I

Simulator

Figure 7. Simulator choice: We used a top-performing RL al-
gorithm (PPO) and measured how each stage of the algorithm
changes with respect to environment choice. GPU accounts for 5%
or less of the runtime across all simulators.

To run the experiment and generate the figures, run:

’ [container]$ experiment_simulator_choice.sh

Figures will be output to output/artifacts/experiment_simulator_choice/«*.pdf.

NOTE: Your reproduced graph will have a slightly different breakdown for Pong than seen above from the RL-Scope
paper; in particular the simulation time will be closer to HalfCheetah. This is likely due to a difference in library
version for the atari-py backend simulator used by Pong.

2.5. 5. Running experiments 9

riscope, Release 1.0.0

10 Chapter 2. RL-Scope artifact evaluation

CHAPTER
THREE

DOCKER DEVELOPMENT ENVIRONMENT

In order to run the Docker development environment, you must perform a one-time configuration of your host system.
In particular:

1. Install docker-compose: install docker and docker—-compose.
2. NVIDIA driver: allow non-root users to access GPU hardware counters.
3. Docker default runtime: make GPUs available to all containers by default.

After you’ve configured your host system, you can launch the RL-Scope docker container:

4. Running the Docker development environment: build and run the container.

3.1 1. Install docker-compose

If your host does not yet have docker installed yet, follow the instructions on DockerHub for Ubuntu.

Make sure you are part of the docker UNIX group:

[host]$ sudo usermod —-aG docker SUSER

NOTE: if you weren’t already part of the docker group, you will need to logout/login for changes to take effect.

Next, we need to install docker—-compose. To install docker—compose into /usr/local/bin/
docker-compose, do the following:

[host]$ DOCKER_COMPOSE_INSTALL_VERSION=1.27.4

[host]$ sudo curl -L "https://github.com/docker/compose/releases/download/
< {DOCKER_COMPOSE_INSTALL_VERSION}/docker—compose-$ (uname -s)-$(uname -m)" -
—0 /usr/local/bin/docker—compose

[host]$ sudo chmod ugo+rx /usr/local/bin/docker—compose

3.2 2. NVIDIA driver

By default, the nvidia kernel module doesn’t allow non-root users to access GPU hardware counters. To allow
non-root user access, do the following:

1. Paste the following contents into /et c/modprobe.d/nvidia-profiler.conf:

options nvidia NVreg_RestrictProfilingToAdminUsers=0

2. Reboot the machine for the changes to take effect:

11

https://docs.docker.com/engine/install/ubuntu

riscope, Release 1.0.0

[host]$ sudo reboot now

Warning: If you forget to do this, RL-Scope will fail during profiling with an
CUPTI_ERROR_INSUFFICIENT_PRIVILEGES error when attempting to read GPU hardware counters.

3.3 3. Docker default runtime

By default, GPUs are inaccessible during image builds and within containers launched by docker-compose. To
fix this, we can make ——runt ime=nvidia the default for all containers on the host. To do this, do the following:

1. Stop docker and any running containers:

[host]$ sudo service docker stop

2. Paste the following contents into /etc/docker/daemon. json:

{

"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime",
"runtimeArgs": []

3. Restart docker:

’[host]$ sudo service docker start

3.4 4. Running the Docker development environment

The run_docker.py python script is used for building and running the docker development environment. In order
to run this script on the host, you need to install some minimal “deployment” pip dependencies (requirements.
deploy.txt).

First, on the host run the following (replacing [rlscope-root] with the directory of your RL-Scope repository):

Install python3/virtualenv on host
[host]$ sudo apt install python3-pip python3-virtualenv

Create python3 virtualenv on host

[host]$ cd [rlscope-root]

[host]$ python3 -m virtualenv -p /usr/bin/python3 ./venv
[host]$ source ./venv/bin/activate

[host (venv)]$ pip install -r requirements.deploy.txt

Build and run RL-Scope the docker development environment
[host (venv)]$ cd [rlscope-root]
[host (venv)]$ python run_docker.py

12 Chapter 3. Docker development environment

riscope, Release 1.0.0

After the container is built, it will run and you should be greeted with the welcome banner:

If you wish to restart the container in the future, you can do:

[host]$ cd [rlscope-root]
[host]$ source ./venv/bin/activate
[host (venv)]$ python run_docker.py

3.4. 4. Running the Docker development environment 13

riscope, Release 1.0.0

14 Chapter 3. Docker development environment

CHAPTER
FOUR

UNIT TESTS

4.1 Running unit tests

RL-Scope has both python and C++ unit tests, which can be run either separately or all together.

To run all unit tests (i.e., both python and C++):

’[container]$ rls—-unit-tests ‘

To run only C++ unit tests:

’[container]$ rls-unit-tests —--tests cpp

Output should look like:

15

riscope, Release 1.0.0

PHD- nomeqq\eezom i
D o

G e o i,

2 tests from TestComonliil

tringsplit 61 One

Lit 61 0ne (6 ms)

5] Enp)
2 tecte From Tettcomonttat. (0 ms Total)

2 tests from TextIdxiap
TextIdxHap. Test BitsetAdd
Textloap.Test Bitsetadd (0 ms)
TextIdxap. Test

612] 496] pid=10956 @ operator(): Preallocate(eo_tines)

6] pid operator(): Preallocate(eo_tines)
496] pid=10956 @ operator(): Preallocate(eo_times)

= 5=} ts
Teumm,p est_Overlopbata. (6 ns)
tests from TextIdxiap (1 ms total)

0 it () Ty
TestIdxap. T

TestIdxap. Test 61 (0 ms)

1 test from TestIddiap (0 ms total)

1 test fron TestConputeoverlap
rlap. Test 01 Complete
1 [trace

496] pid=10956 @ operator(): Preallocate(eo
6] pic operator(): Preallocate(eo,
496] pid=10956 @ operator(): Preallocate(eo
rlap: ctimes.size at start ines.size at

TestConputeOverlap. Test_01 Complete (0 ms)
test from TestComputeOverlap (6 ms total)

0 i e T
hierged. Test_61 Merge
s Test_01 Merge (1 ms)
1 test from TestEachierged (1 ms total)

4 tests from TestBitset
TestBitset.Test_01 30 bits
sizes
sizeof (int
sizeof (unsigned int) = 4
sizeof (unsigned long int
sizeof (unsigned long g int)
sizeof (uin
TestBitset Test 01 3 bits (0 ns)
it:
bits (0 ms
i o i
bit_from_string (6 ms)

s (0 ms)

Categoryk:
ntainskey
ntainskey (6 ms)

op)
et ey (0 ()

2 tests from TestEigen

TestEigen. ElenentwiselessThan
T B (€1
TestEigen fodi

TestEigen; ArrayModl 0

2 tests from TestEigen (6 ms total)

2 it e T
TestGetTracy

Testpath TectoetTr

1test from TestPath (5 me total)

ms

ms

e e e essing (6 ms total)

tests from Testutil
TestUtil. TestKeepExtrene 01
TestUtil. TestKeepExtrene 01 (0 ms)
TestUtil. TestKeepExtrene_o:
TestUtil. TestKeepExtrene_o:
2 tests from TestUtil (6 ms total)

Al i S
tests from 11 test c n. (3 ms total)

pp, rls_unit_tests.py:91 2021-01-

To run only python unit tests:

’[container]s rls-unit-tests --tests py

Output should look like:

an;
$ /home/jgleeson/venv/bin/python -Wignore
PuD=/home/ jgleeson/clone/imL/rls

s
1, py-1.10. o ;ﬂuqq,—[r 1:
dir-
rootdir mome,meezom onfigfile: pytest.ini
collecting 2 itens

test_join_plus_61
test_join_plus

test 61 sys_exit 1
test_62_exception
test_63_mkdir

1-01-15 15

16 Chapter 4. Unit tests

riscope, Release 1.0.0

4.2 Python unit tests

Python unit tests made are using the pytest testing framework. Unit tests are written in the same module as the function
they are testing. To locate unit tests, search for def test_ in a file.

4.3 C++ unit tests

C++ unit tests are made using the gtest testing framework. Unit tests are any/all files rooted under test whose
filename matches test_+. [cc|cpp]. All unit tests are compiled into the r1s-test binary.

4.2. Python unit tests 17

https://pytest.org
https://github.com/google/googletest

riscope, Release 1.0.0

18 Chapter 4. Unit tests

CHAPTER
FIVE

SOURCE DOCUMENTATION

* genindex

¢ modindex

¢ search

e modules

19

riscope, Release 1.0.0

20

Chapter 5. Source documentation

CHAPTER
SIX

DOCUMENTATION TODOS

21

riscope, Release 1.0.0

22

Chapter 6. Documentation TODOs

INDEX

M

module
rlscope, |

R

rlscope
module, 1

23

	Installation
	RL-Scope artifact evaluation
	Docker development environment
	Unit tests
	Source documentation
	Documentation TODOs
	Index

